
Weather & Streaming
Data Engineering Project

PROJECT WRITEUP

Prepared by: Michelle Gordon

Introduction

Music and technology are deeply entrenched in the daily lives of most human
beings. Music is more accessible than ever thanks to technology that allows
us to have unimaginably large music libraries available at our fingertips.
Gone are the days of being hindered by the price of physical media or
listening to a radio station all day long to finally hear your favorite song.
Something else that is deeply entrenched in the daily life of humankind is
weather. Every single day, we make decisions about what to wear, how early
to leave the house, and when and where to hold celebrations based on
weather conditions. Moods and physical pain are affected by weather
conditions such as the barometric pressure, or cloud coverage so it is no
stretch of the imagination to think weather patterns may affect the music we
choose to listen to.

The high-level goals of this project were to create a data pipeline that would:

• extract historical music streaming data from the Spotify API
• extract historical weather data from the OpenWeather API
• Load the transformed data in a data warehouse so that an analytics

team can extract insights about the effects of weather on music
streaming choices.

In the future, this project could be expanded to see weather effects on audio
book and podcast streaming choices as well.

The following sections will introduce the team that took on this project as
well as explain the technical components, methodologies used, the overall
architecture and retrospective thoughts on the
completed project.

The Team

The entire project was completed by a one-person
team consisting of University of Utah MSIS student,
Michelle Gordon. Michelle has played with tech
and music since the age of six. When her father
wasn’t teaching her to write DOS commands on her
family’s Radio Shack computer, she was performing
paid concerts (She charged five cents per ticket) in
her apartment complex’s playground with the help
of her mini Casio keyboard and Fisher Price karaoke

machine. Presently, she is about to graduate with her co-terminal BS/MSIS
degree from the Eccles School of Business with plans to enter the field in a
coding-forward position.

Technical Components

The project was completed using a combination of the Python programming
language, Jupyter Notebooks, RESTful API’s, JSON files, and MySQL. Visual
Studio Code (VSCode) was used to write and execute the Python files and
Jupyter Notebooks. MySQL Workbench was used to setup the destination
database. All the project files were managed via Github’s desktop application
and their VSCode extension.

Extraction

Spotify’s account services, Spotify’s API, and OpenWeather’s API were used as
the data sources. While the intention was to have all the data
programmatically downloaded, Spotify only provides historical streaming data
for users via their account services. They require that you request the data in
your account setting, wait for them to gather all the data, and then manually
download it from the account settings page. The audio features for each song
in the streaming history were extracted programmatically from Spotify’s API
using Python scripts. The process involved the following steps (all
automatically run by Python unless otherwise indicated:

1. Manually download the streaming history JSON file which contains 6416
records.

2. Load the JSON file into a Pandas dataframe. Each row is a track
streamed, so there may be multiple tracks per day and the tracks will
likely appear more than once in the dataset.

3. One row at a time, send a get request with the track name and artist
name to the Spotify API’s track search endpoint to then receive the
track’s id number.

4. Append the id numbers to the dataframe and save it as an updated JSON
file.

5. Break up the streaming history into batches of 100 records (as it is the
maximum number of id numbers Spotify accepts at once) and send one
batch at a time in the get request for audio track features.

6. Save all the features in a dataframe and then serialize the data into a
JSON and CSV file.

a. Even though only one file format was needed, both file formats
were used as a safety net in case one of them caused issues
further down the pipeline.

7. At this point there is a streaming history file that now contains id
numbers, and an audio features file. Both files have 6416 records.

The historical weather data was also extracted programmatically using Python
scripts to interact with the API endpoint. This data includes information such
as precipitation, wind speed, wind direction, barometric pressure, temperature,
and cloud coverage. The process to extract the weather data was as follows:

1. Send a get request to OpenWeather’s API with the zip code and country
code for Taylorsville, Utah (where Michelle lives since her streaming
history is being used for the project) to receive the city’s latitude and
longitude coordinates.

2. Create a list with each date that is part of the streaming history (367
days total).

3. Send one date at a time, along with the latitude and longitude
coordinates, to OpenWeather’s API to receive that day’s weather data.
Then append that data to a JSON file.

4. At this point, there will be a JSON file containing 367 records.

Transformation

Once all of the data was captured and serialized into JSON files, the data was
loaded into Pandas dataframes. Transformations were applied using Jupyter
notebooks to see the changes more easily as they were occurring. Some of
the transformations included:

• changing datetime stamps to dates
• removing unnecessary columns
• converting song lengths from milliseconds to minutes
• changing numerical categorical data to more descriptive information
• Removing rows with zeroes for track ids, as these were tracks Spotify

could not find id info on.
o Some of these circumstances seemed to come from changed track

names or artist names. As these records made up less than 5% of
the data, they were removed.

Once these transformations were complete, all three dataframes (streaming
history, track audio features, and weather data) were serialized into JSON and
CSV files. Both file formats were used as a safety measure in case one of the
files caused issues during the loading phase.

Loading & Serving

MySQL was used to host the data warehouse that would serve data to
analytics teams. To keep data integrity, the three datasets were inserted into
three respective tables in the database as is. The goal was to create views for
analytics purposes instead of requiring analysts to join the tables themselves.
Giving analysts access to the views would give them access to the data
formatted the way they need it. One view was created that joined all three
datasets together, and three other niche views were created as well.

Architecture

Python scripts and Jupyter Notebooks were used because taking a software
engineering approach was more desired than choosing a low-code route.
These technologies also aligned with the technologies used in the Data
Engineering course. Additionally, MySQL and Power BI were chosen for the
loading and serving steps because they were the tools the I was most familiar
with and therefore, would be most successful with. Additionally, as previously
noted, CSV and JSON file formats were both used as a safeguard in case one of

the formats became problematic at any step of the process. As noted in the
following section, that proved to be a good choice because of some problems
that popped up in the ETL process.

Project Work Review

Research and planning were the first steps
taken in beginning this project. The APIs’
documentation along with YouTube tutorial
videos were used to understand how to
correctly extract the necessary data from the
APIs. Preliminary working files were created
to test the API calls using very small data
sets. This was to make sure the API calls
were successfully authenticated and
returning the correct information. From this
point, the planning phase began. On paper,
the different stages of the project were written out, as well as detailed steps
for each stage to help make a clear pathway. Notion, a productivity service,
was used to schedule due dates for each step of the project and easily track
the progress being made.

One of the themes that popped up while working on this project is the fact
that I kept underestimating the difficulty of each step of the process. For
example, extracting data seemed like a simple step, and proved to be more
difficult than expected once the real data was flowing through the pipelines.
At that point, I thought that extraction was the most difficult step, and that
the next stages would go a lot more quickly and smoothly. That was certainly
not the case. Each step had its difficulties and frustrating moments.

One of the biggest surprises came from getting data from Spotify (the
streaming history) with what seemed to be orphaned records. When the songs
from the history were sent into the API to get the track id number, many songs
came back without ids. It was also surprising that even the data coming back
from these songs without ids wasn’t consistent. Some of them had the entire
key-value structure setup, but with empty values. Some only came back with
the first key, but empty. Other songs returned an empty list. It was
unexpected to see all these inconsistencies with raw data that was being fed
back to its own source.

My lack of experience with JSON files and exporting them from Pandas
dataframes became a frequent source of problems. Although I thought I was
familiar with JSON due to the course assignments, problems kept popping up
when it came to the interaction between dataframes, JSON files, and JSON data
coming in from API’s. There were times it seemed like the dataframe had
been pivoted when saved to a JSON file and I could not figure out why.
Therefore, the decision was made to save files in both JSON and CSV format so
that I revert to the CSV files if there were problems with the JSON data.

 Ultimately, the extract and transform stages of the project proved to be more
complex and time-consuming than expected. I now understand why it’s so
easy for people to underestimate the work a data engineer does when in
reality, it is exceedingly complex. The biggest culprit is that data engineers
are at the mercy of the data sources – especially if it is a 3rd party data source.

Retrospective

Despite the difficulties, the project still proved to be successful. In the first
few minutes of analyzing and visualizing the data in the database, all of the
work became well worth the effort. It has been rewarding to see some of the
insights gained from pairing up the weather data with the streaming history.

There are two things that would greatly enhance future projects. First, it
would be wise for me to learn more about the interaction between JSON and
the Pandas library in Python. A lot of time and frustration would likely be
saved by understanding the complexities that exist under the hood. Second,
using Apache Airflow or a cloud-based orchestration service would boost the
efficiency and reliability of the whole project. Furthermore, this project would
benefit from having team members that are versed in cloud services for data
engineering as they would be able to leverage all of the benefits that come
from hosting projects like these in the cloud.

Lastly, this is a project that could provide fascinating insights if executed at a
much larger scale than what I did. The streaming history for all Spotify users
in a city could be collected along with the respective weather information to
create a much larger data set and more conclusive insights.

Included on the following page are visualizations built from the data served
from the project.

	cover_page
	writeup

